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Survival-time distribution for inelastic collapse

Michael R. Swift and Alan J. Bray
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~Received 30 November 1998!

In a recent publication@Phys. Rev. Lett.81, 1142~1998!# it was argued that a randomly forced particle that
collides inelastically with a boundary can undergo inelastic collapse and come to rest in a finite time. Here we
discuss the survival probability for the inelastic collapse transition. It is found that the collapse-time distribu-
tion behaves asymptotically as a power law in time, and that the exponent governing this decay is nonuniver-
sal. An approximate calculation of the collapse-time exponent confirms this behavior and shows how inelastic
collapse can be viewed as a generalized persistence phenomenon.@S1063-651X~99!50705-8#

PACS number~s!: 05.40.Jc, 05.20.Dd, 45.05.1x, 81.05.Rm
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There is currently considerable interest in the statist
properties of nonequilibrium systems. At the mesosco
scale, the dynamics can often be described by Lange
equations@1#, and much information can be gained from
study of the first-passage statistics of the underlying stoc
tic process@2#. Quantitative measures such as the survi
time or the persistence probability@3# have been introduced
to characterize the resistance to temporal fluctuations
many cases the persistence probability is found to decay
power-law in time, and the persistence exponent has b
determined, using either exact or approximate analytic te
niques, for a variety of systems. These include the diffus
equation with random initial conditions@4#, reaction-
diffusion systems@5#, phase-ordering kinetics@6#, and inter-
facial growth @7#. The persistence exponent has also be
measured experimentally for breath figures@8#, a two-
dimensional~2D! liquid crystal system@9#, and a 2D soap
froth @10#.

In a recent publication@11# it was shown that a randoml
forced particle that collides inelastically with a boundary c
undergo a collapse transition. Namely, if the coefficient
restitution is small enough the particle will collide an infini
number of times and come to rest at the boundary in a fi
time. This transition represents a novel aggregation mec
nism in a driven dissipative system and has applicati
ranging from Brownian motion in colloids@12# to driven
granular media@13#. In this Rapid Communication we wil
address the following question: Given that the particle w
collapse at some finite timet, what is the distribution of
collapse timesPc(t), or, alternatively, what is the probabilit
that the particle will survive up to timet. Surprisingly, we
find that the collapse-time distribution has power-law ta
and that the exponent governing the asymptotic decay
pends continuously on the coefficient of restitution. Furth
more, we are able to make a connection between the coll
transition and the problem of persistence with partial s
vival @14#. Our results show that inelastic collapse can
viewed as a generalized persistence phenomenon.

We will first outline the arguments that can be used
predict the collapse transition, as they will form the basis
a systematic calculation of the collapse-time distributio
Consider a particle moving in one dimension and subject
random force. The equation of motion is
PRE 591063-651X/99/59~5!/4721~4!/$15.00
l
ic
in

s-
l

In
s a
en
h-
n

n

f

te
a-
s

l

e-
-
se
-
e

f
.
a

d2x

dt2
5h~ t !, ~1!

where h(t) is Gaussian white noise with correlato
^h(t)h(t8)&52Dd(t2t8). Whenever it returns to the origin
with speedv i it is reflected inelastically with a reduced spe
v f5rv i , r being the coefficient of restitution (0<r<1).
The statistics of the motion of the inelastic particle can
inferred from an exact mapping onto an elastic proble
which is statistically equivalent to a free, randomly accel
ated particle. This can be achieved by noting that the eq
tion of motion, Eq.~1!, is invariant under the following res
caling of variables :

x→x85r 23x, t→t85r 22t, ~2!

whilst in the primed coordinates the velocity is increased
a factor 1/r ,v85r 21v. Thus, the combination of an inelast
collision followed by a rescaling of variables results in
elastic collision in the new coordinates. If one now perform
the rescaling after every collision, the elapsed time in
inelastic problem can be expressed as an integral over
effective elastic variables

t5E
t̄ 0

t̄
r 2n(s)ds, ~3!

where t̄ is the elapsed elastic time andn(s) is the number of
zero crossings up to times of a free, randomly accelerate
particle. It was shown in@11# that if r ,r c5e2p/) the inte-

gral in Eq. ~3! will converge with probability 1 ast̄→`.
This is the signature of inelastic collapse, as the particle w
collide an infinite number of times and come to rest at timt.
Here we are interested in the distribution oft ~for r ,r c),
which is generated by the fluctuations inn(t).

In Fig. 1 we plot the collapse-time distribution for differ
ent values ofr, as determined from numerical simulations
which we evolve many trajectories and form a histogram
the resulting collapse times. The details of the simulat
technique for the inelastic dynamics are given in@11#. It is
convenient to work with the variableT5 ln t, and Fig. 1
shows that asymptotically, the probability for collapse with
the interval@T,T1DT# decays exponentially with a rate tha
R4721 ©1999 The American Physical Society
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depends onr. Thus, the collapse-time distribution,Pc(t),
does indeed show power-law scaling of the form

Pc~ t !;
1

t11uc(r )
; t→`, ~4!

which serves to define the collapse-time exponentuc(r ).
Consequently, the survival probability, which is the probab
ity that the particle hasnot collapsed up to timet, will decay
asymptotically ast2uc(r ).

One can argue for the value ofuc in two limiting cases.
For r 50, the particle will collapse at its first return to th
origin because the reflected velocity will be zero. As t
motion up to that point is just that of a free, randomly acc
erated particle,uc(0) can be determined from the firs
passage distribution of the random acceleration process.
known @15# that this distribution decays asymptotically
1/t5/4, which impliesuc(0)51/4. On the other hand, forr
.r c there is no collapse transition, so thatuc(r c)50. As can
be seen in Fig. 1,uc(r ) varies with r between these two
limiting values.

We now turn to an analytic calculation ofuc(r ) which,
although approximate, does reproduce the simulated va
rather accurately. The starting point is the integral express
for the collapse-time, Eq.~3!, where we have assumedr

,r c and take the limitt̄→`. The lower limit of the integral
and the initial condition of the particle are arbitrary, as w
are primarily interested in the long-time behavior. For calc

lational clarity it is convenient to sett̄ 051 in all that follows
@16#. As n(t) only changes at the zero crossings of the u
derlying elastic process, the integral, Eq.~3!, can be ex-
panded as

t5t11r 2~ t22t1!1r 4~ t32t2!1•••, ~5!

wheret i is the time of theith crossing. For the random ac
celeration process, the mean number of crossings up to
t grows logarithmically witht. Therefore, one can map th
problem onto a stationary Gaussian process in the new

FIG. 1. The collapse probabilityPc plotted on a semilog scale a
a function of T. Five values of r are shown: r
50.001,0.01,0.04,0.08,0.12 in ascending order on the right-h
side of the figure.
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variable T5 lnt @11#. It is also useful to express the ne
crossing timesTi in terms of the intervals between crossing
t i , of the stationary process. One then writesT15t1 ,T2
5t11t2••• and so on. Inserting these changes of varia
into Eq. ~5!, and after rearrangement one finds

t5et1@12r 21r 2et2@12r 21r 2et3@12r 21r 2et4@11•••.
~6!

Next we make an approximation that has been emplo
in similar first-passage and persistence problems@4,17#, the
independent interval approximation~IIA !. We assume tha
thet i are all independent and drawn from the same distri
tion PI(t), the interval size distribution. Within this approx
mation, and exploiting the infinite hierarchical structure
Eq. ~6!, the stochastic variablet can be expressed as

t5et@12r 21r 2t8#, ~7!

wheret8 is a random variable drawn from the same distrib
tion as t,Pc(t). It follows that Pc(t) satisfies the integra
equation

Pc~ t !5E
1

`

dt8Pc~ t8!E
0

`

dtPI~t!d~ t2et@12r 21r 2t8# !.

~8!

We are interested in the asymptotic behavior ofPc(t), which
we expect to have the formPc(t);1/t11uc. Inserting this
into Eq. ~8! and performing the asymptotic analysis, we a
left with the following equation whichuc must satisfy:

r 2ucE
0

`

dteuctPI~t!51. ~9!

Thus, from knowledge of the interval size distributionPI(t)
one can determine the collapse-time exponentuc .

The random acceleration process has been studied
Burkhardt @15#, and the interval-size distribution has bee
calculated up to quadrature for arbitrary initial condition
Asymptotically it is known to decay exponentially, havin
the form PI(t);a1e2t/4. The coefficienta1 can be deter-
mined exactly from the results in@15#. The survival probabil-
ity, up to time t, for a particle injected from the origin with
speedu0 has the asymptotic form

Q~0,u0 ,t !5
3

A2pG~3/4!

uu0u1/2

t1/4
. ~10!

This must be averaged overu0 drawn from the scaling dis-
tribution and correctly weighted to pick out the zeros ofx;

the resulting distribution foru0 is P(u0)52(u0 /t0)e2u0
2/t0,

wheret0 is the injection time andP(u0) is normalized over
the interval @0,̀ #. Performing the average overu0 in Eq.
~10!, one finds that the interval-size distribution has the e
pected forma1e2t/4, wheret5 ln t/t0 and

a15
3

4A2p

G~5/4!

G~3/4!
50.221 314 . . . . ~11!
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Figure 2 showsPI(t) determined numerically and confirm
the exponential decay at larget with the correct value ofa1
given above.

Knowledge ofPI(t) for all t is needed to evaluate th
integral in Eq.~9!. A good fit to the numerical data can b
obtained by writingPI(t) as the sum of just two exponen
tials,

PI~t!5a1e2u1t1a2e2u2t, ~12!

with u151/4 anda150.2213. The parametersu2 anda2 can
be determined by imposing two constraints:~i! that PI(t) is
normalized over the interval@0,̀ #, and ~ii ! that it predicts
the correct density of zeros@4#, which is governed by the firs
moment of PI(t),r5A3/2p51/̂ t&. These conditions fix
the unknown parameters to beu251.3254 anda250.1521,
and this approximate expression is also plotted in Fig. 2
can be seen that the parametrizedPI(t) fits the simulation
data rather well over the whole range oft.

When this analytic expression forPI(t) is inserted into
Eq. ~9! one finds the following transcendental equation:

1

r 2uc
5

a1

u12uc
1

a2

u22uc
, ~13!

which can be used to determineuc(r ). The numerical solu-
tion of this equation is shown in Fig. 3, together with t
exponent values measured directly from the simulations.
r close tor c it is hard to access the asymptotic regime n
merically, hence the lack of data in this region of the pl
However, there is rather good agreement for all the value
r considered. Note that with our parametrized expression
PI(t), the IIA correctly predicts both ther→0 limit and the
critical value ofr, namely,r c5e2p/), whereuc→0. Thus,
the analytic calculation confirms that the collapse expon
is nonuniversal and depends continuously onr. The inset in
Fig. 3 shows the behavior ofuc(r ) for r→0, where the ap-
proximate analytic calculation and the simulation data app
to coincide. To leading order inr, Eq. ~13! can be expanded
to give

FIG. 2. The interval size distributionPI(t) plotted on a semilog
scale as a function oft. The points are the numerical data, while t
line shows the approximate fit, Eq.~12!.
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uc51/42a1Ar 1 . . . . ~14!

As only the first term on the right hand side of Eq.~13!
contributes in this limit, the expansion is exact within th
IIA, since bothu1(51/4) anda1 are known exactly.

Finally we point out an intriguing connection between t
exponentuc and the persistence exponent of a randomly
celerated particle with ‘‘partial survival’’@14#. Consider the
processx(t) described by Eq.~1!, and let the particle survive
with probability p each time its position,x(t), crosses
through zero. Working in the logarithmic time variable,T
5 ln t, the probability that the particle survives for a timeT
~in the stationary state! is

Psurv~T!5 (
n50

`

pn Pn~T!, ~15!

where Pn(T) is the probability that the process hasn zero
crossings in timeT. We anticipate @14# that Psurv(T)

;e2u(p)T for T→`, i.e., that the Laplace transformP̃surv(s)
will have a simple pole ats52u(p).

The Laplace transformsP̃n(s) were worked out, in terms

of the Laplace transformP̃I(s) of the interval-size distribu-
tion, PI(t), within the IIA in @4#. Carrying out the sum ove

n in Eq. ~15! gives P̃surv(s), and one finds a simple pol

given by the conditionpP̃I(s)51. Settings52u(p) yields
finally p*0

`dteu(p)tPI(t)51 as the equation determinin
u(p). This equation has an identical form to Eq.~9! for uc ,
suggesting that the collapse process with coefficient of re
tution r is in some sense equivalent to a randomly forc
particle with survival probabilityp5r 2uc at each collision.
As yet, however, we have been unable to establish
equivalence outside the IIA.

To summarize, we have studied the collapse-time dis
bution,Pc(t), for a randomly forced particle colliding inelas

FIG. 3. The collapse-time exponentuc as a function ofr. The
points are the numerical data, obtained from measuring the slo
of Pc(T). The errors are of the same order as the size of the circ
The line is the analytic approximation determined from the solut
of Eq. ~13!. The inset shows an expanded view of the main figu
for r close to zero, where the simulation data and the approxim
calculation appear to coincide.
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tically with a boundary, in the regimer ,r c where inelastic
collapse occurs. We have shown that the distribution ha
power-law tail,Pc(t);1/t11uc, characterized by an expone
uc , which varies continuously withr for 0<r<r c . An ana-
lytical approach, based on the approximation that the in
vals ~in the variableT5 ln t) between zero crossings of
free, randomly accelerated particle can be treated as sta
cally independent, leads to results which are in good ag
s
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ay

s
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ti-
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ment with numerical simulations. We have also noted a f
mal similarity between Eq.~9!, which determinesuc within
this approach, and the equivalent equation for the persiste
exponent of a randomly accelerated particle with partial s
vival @14#. This similarity invites further study.
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