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Survival-time distribution for inelastic collapse
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In a recent publicatiofPhys. Rev. Lett81, 1142(1998] it was argued that a randomly forced particle that
collides inelastically with a boundary can undergo inelastic collapse and come to rest in a finite time. Here we
discuss the survival probability for the inelastic collapse transition. It is found that the collapse-time distribu-
tion behaves asymptotically as a power law in time, and that the exponent governing this decay is nonuniver-
sal. An approximate calculation of the collapse-time exponent confirms this behavior and shows how inelastic
collapse can be viewed as a generalized persistence phenom8t0663-651X99)50705-9

PACS numbgs): 05.40.Jc, 05.20.Dd, 45.056x, 81.05.Rm

There is currently considerable interest in the statistical d?x
properties of nonequilibrium systems. At the mesoscopic —2=77(t), (1)
scale, the dynamics can often be described by Langevin dt

equationd 1], and much information can be gained from a . . . . .
g sL] g where 7(t) is Gaussian white noise with correlator

study of the first-passage statistics of the underlying stochas(ﬂ(t) 2(t'))=2D 5(t—t'). Whenever it returns to the origin

tic process[2]. Quantitative measures such as the survival' ! - . . .
. < . . with speed; it is reflected inelastically with a reduced speed
time or the persistence probabilifg] have been introduced peed; y P

to ch rerize th st o t | fluctuati Ivfzrvi,r being the coefficient of restitution @r=<1).
0 characterize the resistance fo temporal TUCualions. 1hye siatistics of the motion of the inelastic particle can be

many cases the persistence probability is found to decay as;&arred from an exact mapping onto an elastic problem,

power-law in time, and the persistence exponent has begfich is statistically equivalent to a free, randomly acceler-
determined, using either exact or approximate analytic teChyieq particle. This can be achieved by noting that the equa-
niques, for a variety of systems. These include the diffusioijgn of motion, Eq.(1), is invariant under the following res-
equation with random initial conditiong4], reaction- caling of variables :

diffusion systemg5], phase-ordering kinetid$], and inter-

facial growth[7]. The persistence exponent has also been Xx—x'=r"%, tot'=r"2, 2

measured experimentally for breath figurf&], a two-

dimensional(2D) liquid crystal systen{9], and a 2D soap Whilst in the primed coordinates the velocity is increased by

froth [10]. a falcyor 1,v'=r"1v. Thus, thg combina}tion of an inelgstic
In a recent publicatiof11] it was shown that a randomly collision followed by a rescaling of variables results in an

forced particle that collides inelastically with a boundary can€lastic collision in the new coordinates. If one now performs

undergo a collapse transition. Namely, if the coefficient off[he rescaling after every collision, the elapsed time in the

restitution is small enough the particle will collide an infinite inelastic problem can be expressed as an integral over the

number of times and come to rest at the boundary in a ﬁnitéaffectlve elastic variables

time. This transition represents a novel aggregation mecha- T
nism in a driven dissipative system and has applications t=f_r2”(5)ds, 3
ranging from Brownian motion in colloid§12] to driven

granular medid13]. In this Rapid Communication we will —. o ,
address the following question: Given that the particle willWheret is the elapsed elastic time ands) is the number of
collapse at some finite time what is the distribution of Z€r0 Crossings up to timeof a free, randorpiyﬂaccellerated
collapse time®(t), or, alternatively, what is the probability Particle. It was shown i11] thatifr<r.=e the inte-
that the particle will survive up to time Surprisingly, we gral in Eq. (3) will converge with probability 1 ag—o.
find that the collapse-time distribution has power-law tailsThis is the signature of inelastic collapse, as the particle will
and that the exponent governing the asymptotic decay desollide an infinite number of times and come to rest at time
pends continuously on the coefficient of restitution. FurtherHere we are interested in the distribution toffor r<r),
more, we are able to make a connection between the collapséhich is generated by the fluctuationsnit).
transition and the problem of persistence with partial sur- In Fig. 1 we plot the collapse-time distribution for differ-
vival [14]. Our results show that inelastic collapse can beent values of, as determined from numerical simulations in
viewed as a generalized persistence phenomenon. which we evolve many trajectories and form a histogram of
We will first outline the arguments that can be used tothe resulting collapse times. The details of the simulation
predict the collapse transition, as they will form the basis oftechnique for the inelastic dynamics are giver{1d]. It is
a systematic calculation of the collapse-time distribution.convenient to work with the variabl@=Int, and Fig. 1
Consider a particle moving in one dimension and subject to ahows that asymptotically, the probability for collapse within
random force. The equation of motion is the interval[ T,T+ AT] decays exponentially with a rate that

to
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variable T=Int [11]. It is also useful to express the new
crossing timeg; in terms of the intervals between crossings,
7;, Of the stationary process. One then writes=7,,T,
=7+t 7,--- and so on. Inserting these changes of variable
into Eq. (5), and after rearrangement one finds

t=e"[1-r?+r2e2[1—r2+r%e"[1—r2+r2e™1+---.

(6)

Next we make an approximation that has been employed
in similar first-passage and persistence probl¢ins7], the
independent interval approximatigqilA). We assume that
the 7; are all independent and drawn from the same distribu-
tion P,(7), the interval size distribution. Within this approxi-
mation, and exploiting the infinite hierarchical structure of
T Eq. (6), the stochastic variablecan be expressed as

10

FIG. 1. The collapse probability . plotted on a semilog scale as t=e1— r24 r2t’], )
a function of T. Five values of r are shown: r
=0.001,0.01,0.04,0.08,0.12 in ascending order on the right-hanglheret/

i - is a random variable drawn from the same distribu-
side of the figure.

tion ast,P.(t). It follows that P.(t) satisfies the integral

depends orr. Thus, the collapse-time distributioi®(t), equation

does indeed show power-law scaling of the form - w
Pc(t)=J’ dt’Pc(t')J d7P,(7)8(t—eT1—r2+r?t']).
1 0

Pe(t)~ t—oe, (4) )

t1+ 096(() ;

, i . We are interested in the asymptotic behavioPgft), which
which serves to define the collapse-time exponegr). e expect to have the forrR,(t)~1/t1*%. Inserting this

Consequently, Fhe survival probability, Whi'Ch is the probabil-jio Eq.(8) and performing the asymptotic analysis, we are
ity that the particle hasot collapsed up to time, will decay  |eft with the following equation whichd, must satisfy:
asymptotically ag ™ %(").

One can argue for the value @éf in two limiting cases. o
For r=0, the particle will collapse at its first return to the rZ(’CJ dre?%™P,(7)=1. 9
origin because the reflected velocity will be zero. As the 0
motion up to that point is just that of a free, randomly accel- , . o
erated particle,d,(0) can be determined from the first- Thus, from knovyledge of the mteryal size distributiBy( 7)
passage distribution of the random acceleration process. It &€ can determine the collapse-time exporgnt ,
known [15] that this distribution decays asymptotically as _ 1he random acceleration process has been studied by
1£5 which implies 6,(0)=1/4. On the other hand, far Burkhardt[15], and the |nterval-5|ze_ dlstrlbgt_lon has_t_)een
>r_ there is no collapse transition, so thatr.)=0. As can calculateq up tp quadrature for arbitrary |n|tlal cond|t|qns.
be seen in Fig. 16,(r) varies withr between these two Asymptotically it is Ifnlgwn to decgy. exponentially, having
limiting values. thg form P,(7)~a.e” "". The coefficienta; can be detgr-

We now turn to an analytic calculation @(r) which, _mmed exa_ctly from the results_ [45]. The survival p_ro_babl_l-
although approximate, does reproduce the simulated valudy: UP to timet, for a particle injected from the origin with
rather accurately. The starting point is the integral expressiofP&€dUo has the asymptotic form
for the collapse-time, Eq(3), where we have assumed

1/2
<r. and take the limit —oc. The lower limit of the integral Q(0Ug,t)= [Uo| ]
and the initial condition of the particle are arbitrary, as we V2=l (3/4) tY4
are primarily interested in the long-time behavior. For calcu-

lational clarity it is convenient to set=1 in all that follows ~ This must be averaged ovep drawn from the scaling dis-
[16]. As n(t) only changes at the zero crossings of the undribution and correctly weighted to pick out the zerc;sxof
derlying elastic process, the integral, E§), can be ex- the resulting distribution foug is P(ug)=2(ug/ty)e (o',
panded as wheret, is the injection time andP(ugp) is normalized over
the interval[ 0,0]. Performing the average over, in Eq.
t=ty+ré(ty—ty) +ritg—ty) +- - -, (5) (10, one finds that the interval-size distribution has the ex-
pected forma,e” 74, wherer=Int/t, and

(10

wheret; is the time of theith crossing. For the random ac-
celeration process, the mean number of crossings up to time 3 T(5/4
t grows logarithmically witht. Therefore, one can map the a;= 7
problem onto a stationary Gaussian process in the new time 427 T'(3/4)

=0.2213% .. .. (12)
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FIG. 2. The interval size distributioR, (7) plotted on a semilog FIG. 3. The collapse-time expone#fi as a function ofr. The
scale as a function of. The points are the numerical data, while the points are the numerical data, obtained from measuring the slopes
line shows the approximate fit, E(L2). of P.(T). The errors are of the same order as the size of the circles.

The line is the analytic approximation determined from the solution
Figure 2 shows,(7) determined numerically and confirms of Eg. (13). The inset shows an expanded view of the main figure
the exponential decay at largewith the correct value oé; for r close to zero, Wher.e the simulation data and the approximate
given above. calculation appear to coincide.
Knowledge ofP,(7) for all 7 is needed to evaluate the
integral in Eq.(9). A good fit to the numerical data can be fc=14-a\r+ .. .. (14
obtained by writingP,(7) as the sum of just two exponen-
tials, As only the first term on the right hand side of Ed.3)
contributes in this limit, the expansion is exact within the
P(r)=a,e” 17+ae %7, (12 IlA, since both#,(=1/4) anda, are known exactly.

Finally we point out an intriguing connection between the
with 6;=1/4 anda,=0.2213. The parametefs anda, can  €xponentf. and the persistence exponent of a randomly ac-
be determined by imposing two constrair(ﬁé:thatP,(r) is celerated particle with “partial survival’[14]. Consider the
normalized over the intervdl0ec], and (ii) that it predicts ~Procesx(t) described by Eq(1), and let the particle survive
the correct density of zergd], which is governed by the first With probability p each time its positionx(t), crosses
moment of P,(7),p=3/2m=1/7). These conditions fix through zero. W(_)r_kmg in the Iog_arlthmlc time varlabré,
the unknown parameters to tig=1.3254 anda,=0.1521, =_Int, the probablhty that the particle survives for a tine
and this approximate expression is also plotted in Fig. 2. Ifin the stationary stajds
can be seen that the parametrizedr) fits the simulation .
data rather well over the whole range of

When this analytic expression fd?,(7) is inserted into Psur\)(T)ano p" Pn(T), (15
Eq. (9) one finds the following transcendental equation:

where P, (T) is the probability that the process hasero
1 a; a, crossings in timeT. We anticipate[14] that Pg,(T)

= + , 13 _ .
r26c 61— 6, 6,— 6, (13 ~e !PT for T, j.e., that the Laplace transforRy,(s)
will have a simple pole as=— 6(p).

which can be used to determirig(r). The numerical solu- The Laplace transformﬁn(s) were worked out, in terms

tion of this equation is shown in Fig. 3, together with the ¢ yhe | apiace transfor®,(s) of the interval-size distribu-

exponent vallugs measured directly from the si_mulat?ons. Fotrion, P,(7), within the IIA in [4]. Carrying out the sum over
r close tor it is hard to access the asymptotic regime nu-

merically, hence the lack of data in this region of the plot." in EQ. (15 gives Pg(s), and one finds a simple pole
However, there is rather good agreement for all the values afiven by the conditiorpP,(s)=1. Settings= — 6(p) yields

r considered. Note that with our parametrized expression fofinally pfgdrea(p)TP,(r)= 1 as the equation determining
P.(7), the IIA correctly predicts both the—0 limit and the  #(p). This equation has an identical form to E§) for 6.,
critical value ofr, namely,r.=e~ V3, wheref.—0. Thus, suggesting that the collapse process with coefficient of resti-
the analytic calculation confirms that the collapse exponentution r is in some sense equivalent to a randomly forced
is nonuniversal and depends continuouslyroifhe inset in  particle with survival probabilityp=r2% at each collision.
Fig. 3 shows the behavior d@f.(r) for r—0, where the ap- As yet, however, we have been unable to establish this
proximate analytic calculation and the simulation data appeagquivalence outside the IIA.

to coincide. To leading order in Eq. (13) can be expanded To summarize, we have studied the collapse-time distri-
to give bution, P.(t), for a randomly forced particle colliding inelas-
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tically with a boundary, in the regime<r. where inelastic ment with numerical simulations. We have also noted a for-
collapse occurs. We have shown that the distribution has mal similarity between Eq(9), which determines, within
power-law tail,P.(t)~ 1" %, characterized by an exponent this approach, and the equivalent equation for the persistence
6, which varies continuously withfor O<r<r.. An ana-  exponent of a randomly accelerated particle with partial sur-
lytical approach, based on the approximation that the interyival [14]. This similarity invites further study.

vals (in the variableT=Int) between zero crossings of a

free, randomly accelerated particle can be treated as statisti- This work was supported by EPSRO.K.) under Grant
cally independent, leads to results which are in good agregNo. GR/K53208.
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